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P2 Methods/ Data

Assessing the changing role of food price predictors —

Evidence from OECD countries
Lisa Hoschle & Xiaohua Yu, University of Gottingen

A combination of supervised and unsupervised machine learning (ML)
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_‘@'_ Long-term food price trends are cluster-specific and do not follow an uniform pattern - heterogenous
= food price inflation between clusters and over time
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= food price predictors = ‘one-size fits all’ policies appear not optimal
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